If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m^2+8m=48
We move all terms to the left:
m^2+8m-(48)=0
a = 1; b = 8; c = -48;
Δ = b2-4ac
Δ = 82-4·1·(-48)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-16}{2*1}=\frac{-24}{2} =-12 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+16}{2*1}=\frac{8}{2} =4 $
| 6x+-4=0(3x+3) | | 3/4x+1/8=1/2x-1/5/16 | | -513=-27r | | 2x^2=20.5^2 | | x²-3x+2=4 | | 7a+3=-8 | | 10-3=(x+2) | | 2z-15=z-63 | | x+2.36=5.16 | | 2x-3=2x+-2 | | 2(x+1)=2(x+4) | | -(x-2)=-(x-4) | | 4x-2x²+6=-2 | | 2x-3=2x+0 | | (x)=(180-x/2)-(2) | | 4x^2+130x-750=0 | | 0.5x-1=13 | | w^2-12w=-36 | | (x)=(180-x/2)-2 | | −5(r+7)=−53 | | (x)=(180-x/2) | | −3(−c−12)=−3c− | | 4m^2+20m+44=0 | | 2z=-6z | | 4x-2x²+6+2=0 | | 34+(59+57)=(34+59)+j | | 1.2(3x+18)=40 | | 8-4y=14 | | 260=x+(x+1) | | 82+.6h=65 | | s^2-25=-25 | | 160+21x=195-14x |